Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Chinese Journal of Otorhinolaryngology Head and Neck Surgery ; (12): 537-541, 2006.
Article in Chinese | WPRIM | ID: wpr-298823

ABSTRACT

<p><b>OBJECTIVE</b>To generate transgenic mice of NKCC1 +/- (heterozygous) and NKCC1 +/+ (wild-type) that have a targeted disruption in the NKCC1 gene in order to investigate the relationship of one copy of NKCC1 gene (NKCC1 +/-) and age-related hearing loss (AHL) and to study the possible pathogenesis of AHL METHODS: Auditory function of NKCC1 +/- mice was detected regularly by auditory brain response (ABR) and endocochlear potential (EP). Morphology of cochlea was observed by scanning electron microscope and content of NKCC1 protein was detected by Western blot.</p><p><b>RESULTS</b>The mean value for ABR thresholds was elevated in NKCC1 +/- mice more than that of NKCC1 +/+ mice (P < 0.01). A progression of age-related hearing loss was found in NKCC1 +/- mice. Compared with younger NKCC1 +/- mice, the mean value for ABR thresholds in aged NKCC1 +/- mice was significantly increased (P < 0.05). The EP of NKCC1 +/- aged mice was also significantly decreased more than that of the younger NKCC1 +/+ mice (P < 0.05). And content of NKCC1 protein were reduced with the growth of the age. The scanning electron microscope showed a kind of scattered punctiform absence of outer hair cells in elder NKCC1 +/- mice cochlea.</p><p><b>CONCLUSIONS</b>NKCC1 gene maybe takes part in the pathogenesis of AHL. Mice that expressed only one copy of NKCC1 could lead to AHL. AHL may be correlative with the amounts of NKCC1 protein and its function and also with the loss of outer hair cells perhaps.</p>


Subject(s)
Animals , Mice , Age Factors , Aging , Genetics , Physiology , Hearing Disorders , Genetics , Heterozygote , Mice, Knockout , Mice, Transgenic , Sodium-Potassium-Chloride Symporters , Genetics , Solute Carrier Family 12, Member 2
2.
Chinese Journal of Otorhinolaryngology Head and Neck Surgery ; (12): 692-697, 2006.
Article in Chinese | WPRIM | ID: wpr-315628

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the auditory function and the role of NKCC1 and alpha2 Na, K-ATPase in the potassium recycling of cochlea.</p><p><b>METHODS</b>NKCC1(+/-) / alpha2 Na, K-ATPase(+/-) mice model was established from NKCC1(+/-) and alpha2 Na, K-ATPase(+/-) mice. The auditory function of all strain mice were detected by auditory brainstem response (ABR) and endocochlear potential (EP) to investigate the role of NKCC1 and alpha2 Na, K-ATPase in the potassium recycling of cochlea. Furosemide and ouabain were applied to block the two channels in Castel mice line which can long-time maintain normal auditory function and then their auditory function was detected by ABR to authenticate the mode of potassium recycling in vivo and the relationship between cochlear potassium recycling and NKCC1(+/-) and alpha2 Na, K-ATPase.</p><p><b>RESULTS</b>The mean value for ABR thresholds in response to stimulus was elevated in NKCC1(+/-) and alpha2 Na, K-ATPase (+/-) mice [(38.49 +/- 12.29) dB and (53.32 +/- 7.62) dB) ] respectively, which was significantly increased compared with that observed in wild type mice [(23.13 +/- 3.78) dB, P < 0.05) ]; The EP value of NKCC1(+/-) [(78 +/- 7) mV] and alpha2 Na, K-ATPase(+/-) mice [(71 +/- 14) mV] was decreased compared with that of NKCC1(+/-) / alpha2 Na, K-ATPase(+/-) mice [( 86 +/- 11) mV]. The auditory function of NKCC1(+/-) / alpha2 Na, K-ATPase(+/-) mice could simulate the model of cochlear potassium recycling well. NKCC1 and Na, K-ATPase were great of importance in the potassium recycling, while the two ion channels were in restrict dynamic equilibrium. Castel mice line after administration with furosemide developed significant ABR threshold shifts (P < 0.05) compared with control group. Castel mice line after administration with ouabain also developed greatly significant ABR threshold shifts (P < 0.05) compared with control group. ABR threshold shifts in mice after administration both furosemide and ouabain was attenuated compared with only administration with furosemide (P < 0.01).</p><p><b>CONCLUSIONS</b>Ion channel NKCC1 and alpha2 Na, K-ATPase played important roles in the inner ear potassium recycling. Dysfunction of either of them could influence potassium concentration in the endolymph and lead to hearing loss subsequently. The role of NKCC1 and alpha2 Na, K-ATPase in cochlear potassium recycling was authenticated in vivo. The two ion channels contribute the key role for dynamic equilibrium in cochlear potassium recycling and are of great importance for the metabolism of potassium in the inner ear to maintain the normal auditory function.</p>


Subject(s)
Animals , Mice , Auditory Threshold , Cochlea , Metabolism , Physiology , Evoked Potentials, Auditory, Brain Stem , Genotype , Mice, Knockout , Potassium , Metabolism , Sodium-Potassium-Chloride Symporters , Metabolism , Sodium-Potassium-Exchanging ATPase , Metabolism , Solute Carrier Family 12, Member 2
3.
Chinese Medical Journal ; (24): 980-985, 2006.
Article in English | WPRIM | ID: wpr-265267

ABSTRACT

<p><b>BACKGROUND</b>After establishing a murine model of aminoglycoside antibiotic (AmAn) induced ototoxicity, the sensitivity of AmAn induced ototoxicity in three murine strains and the effect of kanamycin on the expression of Na-K-2Cl cotransporter-1 (NKCC1) in stria vascularis were investigated.</p><p><b>METHODS</b>C57BL/6J, CBA/CaJ, NKCC1(+/-) mice (24 of each strain) were randomly divided into four experimental groups: A: kanamycin alone; B: kanamycin plus 2, 3-dihydroxybenzoate; C: 2, 3-dihydroxybenzoate alone; and D: control group. Mice were injected with kanamycin or/and 2, 3-dihydroxybenzoate twice daily for 14 days. Auditory brainstem response (ABR) was measured and morphology of cochlea delineated with succinate dehydrogenase staining. Expression of NKCC1 in stria vascularis was detected immunohistochemically.</p><p><b>RESULTS</b>All three strains in groups A and B developed significant ABR threshold shifts (P < 0.01), which were accompanied by outer hair cell loss. NKCC1 expression in stria vascularis was the weakest in group A (A cf D, P < 0.01) and the strongest in groups C and D (P < 0.05). CBA/CaJ mice had the highest sensitivity to AmAn.</p><p><b>CONCLUSIONS</b>Administration of kanamycin established AmAn induced ototoxicity. Kanamycin inhibited the expression of NKCC1 in stria vascularis. 2, 3-dihydroxybenzoate attenuated AmAn induced ototoxicity-possibly by enhancing the expression of NKCC1. Age related hearing loss did not show additional sensitivity to AmAn induced ototoxicity in murine model.</p>


Subject(s)
Animals , Mice , Anti-Bacterial Agents , Toxicity , Auditory Threshold , Hair Cells, Vestibular , Kanamycin , Toxicity , Mice, Inbred C57BL , Mice, Inbred CBA , Sodium-Potassium-Chloride Symporters , Solute Carrier Family 12, Member 2 , Stria Vascularis , Chemistry
4.
Chinese Journal of Otorhinolaryngology Head and Neck Surgery ; (12): 43-47, 2006.
Article in Chinese | WPRIM | ID: wpr-239069

ABSTRACT

<p><b>OBJECTIVE</b>To establish a mice model of aminoglycoside antibiotics (AmAn) induced ototoxicity. Then to investigate the sensitivity of AmAn induced ototoxicity in three mouse strains and effect of kanamycin on the expression of Na-K-2Cl co-transporter-1 (NKCC1) in stria vascularis.</p><p><b>METHODS</b>C57BL/ 6J, CBA/CaJ, NKCC1 +/- mice (each of twenty-four) were randomly divided into four experimental groups A, B, C and D (A kanamycin alone, B kanamycin plus 2, 3-dihydroxybenzoate, C 2, 3-dihydroxybenzoate alone, D control group). Mice were injected with kanamycin or/and 2, 3-dihydroxybenzoate for 14 days. Auditory function was measured by auditory brainstem response (ABR) and morphology of cochlea was observed by succinate dehydrogenase staining. Expression of NKCC1 was detected by immunohistochemistry.</p><p><b>RESULTS</b>Mice in group A developed significant ABR threshold shifts (P < 0.01), which were accompanied by out hair cells loss. Mice in group B significantly attenuated ABR threshold shifts with out hair cells loss (P <0.01). The immunostaining of NKCC1 in stria vascularis was attenuated significantly in group A compared with group D (P < 0.01) while the immunostaining in group B was enhanced than which in group A (P < 0.01). CBA/CaJ mice has the highest sensitivity to AmAn in three mouse strains.</p><p><b>CONCLUSIONS</b>An mouse model of AmAn induced ototoxicity could be established by administration of kanamycin. Kanamycin could inhibit the expression of NKCC1 in stria vascularis. 2, 3-dihydroxybenzoate could attenuate AmAn induced ototoxicity maybe by enhancing the expression of NKCC1. Mice that had the characteristic of presbycusis didn't show additional sensitivity of AmAn induced ototoxicity.</p>


Subject(s)
Animals , Mice , Anti-Bacterial Agents , Toxicity , Blood Vessels , Metabolism , Cochlea , Metabolism , Kanamycin , Toxicity , Mice, Inbred C57BL , Mice, Inbred CBA , Parabens , Toxicity , Sodium-Potassium-Chloride Symporters , Metabolism , Solute Carrier Family 12, Member 2
SELECTION OF CITATIONS
SEARCH DETAIL